Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Science ; 383(6680): 289-293, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38236963

RESUMEN

To harness the potential of a quantum computer, quantum information must be protected against error by encoding it into a logical state that is suitable for quantum error correction. The Gottesman-Kitaev-Preskill (GKP) qubit is a promising candidate because the required multiqubit operations are readily available at optical frequency. To date, however, GKP qubits have been demonstrated only at mechanical and microwave frequencies. We realized a GKP state in propagating light at telecommunication wavelength and verified it through homodyne measurements without loss corrections. The generation is based on interference of cat states, followed by homodyne measurements. Our final states exhibit nonclassicality and non-Gaussianity, including the trident shape of faint instances of GKP states. Improvements toward brighter, multipeaked GKP qubits will be the basis for quantum computation with light.

2.
Phys Rev Lett ; 131(23): 230801, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38134775

RESUMEN

Uncertainty principle prohibits the precise measurement of both components of displacement parameters in phase space. We have theoretically shown that this limit can be beaten using single-photon states, in a single-shot and single-mode setting [F. Hanamura et al., Estimation of gaussian random displacement using non-gaussian states, Phys. Rev. A 104, 062601 (2021).PLRAAN2469-992610.1103/PhysRevA.104.062601]. In this Letter, we validate this by experimentally beating the classical limit. In optics, this is the first experiment to estimate both parameters of displacement using non-Gaussian states. This result is related to many important applications, such as quantum error correction.

3.
Opt Express ; 31(18): 29271-29279, 2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37710731

RESUMEN

Quantum frequency conversion (QFC), which involves the exchange of frequency modes of photons, is a prerequisite for quantum interconnects among various quantum systems, primarily those based on telecom photonic network infrastructures. Compact and fiber-closed QFC modules are in high demand for such applications. In this paper, we report such a QFC module based on a fiber-coupled 4-port frequency converter with a periodically poled lithium niobate (PPLN) waveguide. The demonstrated QFC shifted the wavelength of a single photon from 780 to 1541 nm. The single photon was prepared via spontaneous parametric down-conversion (SPDC) with heralding photon detection, for which the cross-correlation function was 40.45 ± 0.09. The observed cross-correlation function of the photon pairs had a nonclassical value of 13.7 ± 0.4 after QFC at the maximum device efficiency of 0.73, which preserved the quantum statistical property. Such an efficient QFC module is useful for interfacing atomic systems and fiber-optic communication.

4.
Phys Rev Lett ; 131(1): 013601, 2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37478457

RESUMEN

In a single qubit system, a universal quantum classifier can be realized using the data reuploading technique. In this study, we propose a new quantum classifier applying this technique to bosonic systems and successfully demonstrate it using a silicon-based photonic integrated circuit. We established a theory of quantum machine learning algorithm applicable to bosonic systems and implemented a programmable optical circuit combined with an interferometer. Learning and classification using part of the implemented optical quantum circuit with uncorrelated two photons resulted in a classification with a success probability of 94±0.8% in the proof of principle experiment. As this method can be applied to an arbitrary two-mode N-photon system, further development of optical quantum classifiers, such as extensions to quantum entangled and multiphoton states, is expected in the future.

5.
Opt Express ; 31(12): 20471-20479, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37381441

RESUMEN

We report superconducting nanostrip single-photon detectors (SNSPDs) with dielectric multilayer cavities (DMCs) for a 2-µm wavelength. We designed a DMC composed of periodic SiO2/Si bilayers. Simulation results of finite element analysis showed that the optical absorptance of the NbTiN nanostrips on the DMC exceeded 95% at 2 µm. We fabricated SNSPDs with an active area of 30 µm × 30 µm, which was sufficiently large to couple with a single-mode fiber of 2 µm. The fabricated SNSPDs were evaluated using a sorption-based cryocooler at a controlled temperature. We carefully verified the sensitivity of the power meter and calibrated the optical attenuators to accurately measure the system detection efficiency (SDE) at 2 µm. When the SNSPD was connected to an optical system via a spliced optical fiber, a high SDE of 84.1% was observed at 0.76 K. We also estimated the measurement uncertainty of the SDE as ±5.08% by considering all possible uncertainties in the SDE measurements.

6.
Sci Adv ; 8(43): eadd4019, 2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36306354

RESUMEN

Controlling the temporal waveform of light is the key to a versatile light source in classical and quantum electronics. Although pulse shaping of classical light is mature and has been used in various fields, more advanced applications would be realized by a light source that generates arbitrary quantum light with arbitrary temporal waveforms. We call such a device a quantum arbitrary waveform generator (Q-AWG). The Q-AWG must be able to handle various quantum states of light, which are fragile. Thus, the Q-AWG requires a radically different methodology from classical pulse shaping. Here, we invent an architecture of Q-AWGs that can operate semi-deterministically at a repetition rate over gigahertz in principle. We demonstrate its core technology via generating highly nonclassical states with temporal waveforms that have never been realized before. This result would lead to powerful quantum technologies based on Q-AWGs such as practical optical quantum computing.

7.
Opt Express ; 30(20): 36711-36716, 2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36258594

RESUMEN

We demonstrate a distribution of frequency-multiplexed polarization-entangled photon pairs over 16 frequency channels using demultiplexers for the signal and idler photons with a frequency spacing of 25 GHz, which is compatible with dense wavelength division multiplexing (DWDM) technology. Unlike conventional frequency-multiplexed photon-pair distribution by a broadband spontaneous parametric down-conversion (SPDC) process, we use photon pairs produced as a biphoton frequency comb by SPDC inside a cavity where one of the paired photons is confined. Owing to the free spectral range of 12.5 GHz and the finesse of over 10 of the cavity, the generated photons having a narrow linewidth in one channel are separated well from those in the other channels, which minimizes channel cross-talk in advance. The observed fidelities of the photon pairs range from 81 % to 96 % in the 16 channels. The results show the usefulness of the polarization-entangled biphoton frequency comb for frequency-multiplexed entanglement distribution via a DWDM system.

8.
Sci Rep ; 12(1): 8964, 2022 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-35624230

RESUMEN

A frequency-multiplexed entangled photon pair and a high-dimensional hyperentangled photon pair are useful to realize a high-capacity quantum communication. A biphoton frequency comb (BFC) with entanglement can be used to prepare both states. We demonstrate polarization entangled BFCs with over 1400 frequency modes, which is approximately two orders of magnitude larger than those of earlier entangled BFCs, by placing a singly resonant periodically poled LiNbO3 waveguide resonator within a Sagnac loop. The BFCs are demonstrated by measuring the joint spectral intensity, cross-correlation, and autocorrelation. Moreover, the polarization entanglement at representative groups of frequency modes is verified by quantum state tomography, where each fidelity is over 0.7. The efficient generation of a massive-mode entangled BFC is expected to accelerate the increase of capacity in quantum communication.

9.
Opt Express ; 30(9): 14161-14171, 2022 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-35473166

RESUMEN

Continuous-wave (CW) squeezed light is used in the generation of various optical quantum states, and thus is a fundamental resource of fault-tolerant universal quantum computation using optical continuous variables. To realize a practical quantum computer, a waveguide optical parametric amplifier (OPA) is an attractive CW squeezed light source in terms of its THz-order bandwidth and suitability for modularization. The usages of a waveguide OPA in quantum applications thus far, however, are limited due to the difficulty of the generation of the squeezed light with a high purity. In this paper, we report the first observation of Wigner negativity of the states generated by a heralding method using a waveguide OPA. We generate Schrödinger cat states at the wavelength of 1545 nm with Wigner negativity using a quasi-single-mode ZnO-doped periodically poled LiNbO3 waveguide module we developed. Wigner negativity is regarded as an important indicator of the usefulness of the quantum states as it is essential in the fault-tolerant universal quantum computation. Our result shows that our waveguide OPA can be used in wide range of quantum applications leading to a THz-clock optical quantum computer.

10.
Opt Express ; 30(4): 4999-5007, 2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35209471

RESUMEN

Ultrafast quantum optics with time-frequency entangled photons is at the forefront of progress towards future quantum technologies. However, to unravel the time domain structure of entangled photons and exploit fully their rich dimensionality, a single-photon detector with sub-picosecond temporal resolution is required. Here, we present ultrafast single-photon detection using an optical Kerr gate composed of a photonic crystal fiber (PCF) placed inside a Sagnac interferometer. A near-rectangle temporal waveform of a heralded single-photon generated via spontaneous parametric down-conversion is measured with temporal resolution as high as 224 ± 9 fs. The large nonlinearity and long effective interaction length of the PCF enables maximum detection efficiency to be achieved with only 30.5 mW gating pulse average power, demonstrating an order-of-magnitude improvement compared to optical gating with sum-frequency generation. Also, we discuss the trade-off relationship between detection efficiency and temporal resolution.

11.
Opt Lett ; 46(24): 6015-6018, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34913907

RESUMEN

We demonstrate the high-speed operation of a 16-element superconducting nanostrip single-photon detector (SNSPD) array with a single flux quantum (SFQ) multiplexer. The SFQ multiplexer can reshape the output signals from 16-element SNSPD into pulses with durations shorter than 1 ns and bundle these pulses into one output line, which is advantageous for high-speed operation of the SNSPD array system. We confirmed the correct operation of the 16-element SNSPD system with a system detection efficiency of 80% at a wavelength of 1550 nm, timing jitter of 45 ps, and successful observation of photons at 1 ns time intervals as distinguishable output pulses. The reduction in detection efficiency could also be suppressed to ∼0.93 during the dead time of ∼10ns for each SNSPD pixel when the incident photon flux was relatively low at 0.1 photon/pulse.

12.
Opt Express ; 29(8): 11728-11738, 2021 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-33984948

RESUMEN

Superconducting nanostrip photon detectors have been used as single-photon detectors, which can discriminate only photons' presence or absence. It has recently been found that they can discriminate the number of photons by analyzing the output signal waveform, and they are expected to be used in various fields, especially in optical-quantum-information processing. Here, we improve the photon-number-resolving performance for light with a high-average photon number by pattern matching of the output signal waveform. Furthermore, we estimate the positive-operator-valued measure of the detector by a quantum detector tomography. The result shows that the device has photon-number-resolving performance up to five photons without any multiplexing or arraying, indicating that it is useful as a photon-number-resolving detector.

13.
Opt Express ; 28(26): 38993-39004, 2020 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-33379457

RESUMEN

Tailoring spectral properties of photon pairs is of great importance for optical quantum information and measurement applications. High-resolution spectral measurement is a key technique for engineering spectral properties of photons, making them ideal for various quantum applications. Here we demonstrate spectral measurements and optimization of frequency-entangled photon pairs produced via spontaneous parametric downconversion (SPDC), utilizing frequency-resolved sum-frequency generation (SFG), the reverse process of SPDC. A joint phase-matching spectrum of a nonlinear crystal around 1580 nm is captured with a 40 pm resolution and a > 40 dB signal-to-noise ratio, which is significantly improved compared to traditional frequency-resolved coincidence measurements. Moreover, our scheme is applicable to collinear degenerate sources whose characterization is difficult with previously demonstrated stimulated difference frequency generation (DFG). We also illustrate that the observed phase-matching function is useful for finding an optimal pump spectrum to maximize the spectral indistinguishability of SPDC photons. We expect that our precise spectral characterization technique will be useful tool for characterizing and tailoring SPDC sources for a wide range of optical quantum applications.

14.
Opt Express ; 28(15): 22399-22411, 2020 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-32752502

RESUMEN

Heralded single photons (HSPs) and entangled photon pairs (EPPs) via spontaneous parametric down-conversion are essential tools for the development of photonic quantum information technologies. In this paper, we report a novel ultra-high-rate nonclassical light source realized by developing 50 GHz-repetition-rate mode-locked pump pulses and multiplexed superconducting nanowire single-photon detectors. The presence of the single-photon state in the heralded photons with our setup was indicated by the second-order intensity correlation below 1/2 at the heralding rate over 20 Mcps. Even at the rate beyond 50 Mcps, the nonclassicality was still observed with the intensity correlation below unity. Moreover, our setup is also applicable to the polarization-EPP experiment, where we obtained the maximum coincidence rate of 1.6 Mcps with the fidelity of 0.881 ± (0.254 × 10-3) to the maximally entangled state. Our versatile source could be a promising tool to explore various large-scale quantum-photonic experiments with low success probability and heavy attenuation.

15.
Opt Express ; 28(11): 15824-15834, 2020 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-32549418

RESUMEN

We propose a scalable readout interface for superconducting nanowire single-photon detector (SSPD) arrays, which we call the AQFP/RSFQ interface. This interface is composed of adiabatic quantum-flux-parametron (AQFP) and rapid single-flux-quantum (RSFQ) logic families. The AQFP part reads out the spatial information of an SSPD array via a single cable, and the RSFQ part reads out the temporal information via a single cable. The hybrid interface has high temporal resolution owing to low timing jitter in the operation of the RSFQ part. In addition, the hybrid interface achieves high circuit scalability because of low supply current in the operation of the AQFP part. Therefore, the hybrid interface is suitable for handling many-pixel SSPD arrays. We demonstrate a four-pixel SSPD array using the hybrid interface as proof of concept. The measurement results show that the hybrid interface can read out all of the pixels with a low error rate and low timing jitter.

16.
Opt Express ; 28(8): 12047-12057, 2020 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-32403706

RESUMEN

A two-dimensional single-photon imaging system with high sensitivity and high time resolution is the ultimate camera and useful in a wide range of fields. A superconducting nanowire single-photon detector (SSPD or SNSPD) is one of the best candidates for realizing such an ultimate camera due to its high detection efficiency in a wide spectral range, low dark count rate without after-pulsing, and excellent time resolution. Here we propose a new readout scheme to realize a large-scale imaging array based on SSPD, where a row-column readout architecture is combined with a digital signal processor based on a single-flux-quantum (SFQ) circuit. A 16-pixel row-column readout SSPD array is fabricated and measured with an SFQ digital signal processor. We successfully acquired spatial information as encoded digital bit codes with the temporal information of the photon detection. The system timing jitter was measured as <80 ps for all 16 pixels even through the SFQ signal processor, indicating the potential for an imaging array with an extremely high time resolution.

17.
Sci Adv ; 6(13): eaay5195, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32258399

RESUMEN

Quantum-enhanced optical systems operating within the 2- to 2.5-µm spectral region have the potential to revolutionize emerging applications in communications, sensing, and metrology. However, to date, sources of entangled photons have been realized mainly in the near-infrared 700- to 1550-nm spectral window. Here, using custom-designed lithium niobate crystals for spontaneous parametric down-conversion and tailored superconducting nanowire single-photon detectors, we demonstrate two-photon interference and polarization-entangled photon pairs at 2090 nm. These results open the 2- to 2.5-µm mid-infrared window for the development of optical quantum technologies such as quantum key distribution in next-generation mid-infrared fiber communication systems and future Earth-to-satellite communications.

18.
Opt Express ; 27(26): 38147-38158, 2019 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-31878586

RESUMEN

In this work, we show a proof-of-principle benchtop single-photon light detection and ranging (LIDAR) depth imager at 2.3µm, utilizing superconducting nanowire single-photon detectors (SNSPDs). We fabricate and fiber-couple SNSPDs to exhibit enhanced photon counting performance in the mid-infrared. We present characterization results using an optical parametric oscillator source and deploy these detectors in a scanning LIDAR setup at 2.3µm wavelength. This demonstrates the viability of these detectors for future free-space photon counting applications in the mid-infrared where atmospheric absorption and background solar flux are low.

19.
Sci Rep ; 9(1): 15941, 2019 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-31685915

RESUMEN

The realization of high-quality quantum emitters that can operate at room temperature is important for accelerating the application of quantum technologies, such as quantum communication, quantum information processing, and quantum metrology. In this work, we study the photon-antibunching properties on room-temperature emission from individual colloidal quantum dots (CQDs) using superconducting-nanowire single-photon detectors and temporal filtering of the photoluminescence decay curve. We find that high single-photon purities and high photon-generation rates can be simultaneously achieved by removing the signals originating from the sequential two-photon emission of biexcitons created by multiple excitation pulses. We successfully demonstrate that the ultrahigh performance of the room-temperature single-photon sources showing g(2)(0) ≪ 10-2 can be confirmed by the ultralow-dark-count detection of the temporally purified single photons. These findings provide strong evidence for the attractiveness of CQDs as candidates for high-quality room-temperature quantum light sources.

20.
Phys Rev Lett ; 123(19): 193603, 2019 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-31765215

RESUMEN

We demonstrate a frequency multiplexed photon pair generation based on a quadratic nonlinear optical waveguide inside a cavity which confines only signal photons without confining idler photons and the pump light. We monolithically constructed the photon pair generator by a periodically poled lithium niobate (PPLN) waveguide with a high reflective coating for the signal photons around 1600 nm and with antireflective coatings for the idler photons around 1520 nm and the pump light at 780 nm at the end faces of the PPLN waveguide. We observed a comblike photon pair generation with a mode spacing of the free spectral range of the cavity. Unlike the conventional multiple resonant photon pair generation experiments, the photon pair generation was incessant within a range of 80 nm without missing teeth due to a mismatch of the energy conservation and the cavity resonance condition of the photons, resulting in over 1000-mode frequency multiplexed photon pairs in this range.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...